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1 Introduction

1.1 Publication Abstract

Pre-Print: arxiv.org/abs/2008.13654 [1]

In recent years, numerous studies have employed machine learning (ML) techniques to
enable orders of magnitude faster high-throughput materials discovery by augmentation of
existing methods or as standalone tools. In this paper, we introduce a new neural network-
based tool for the prediction of formation energies based on elemental and structural features
of Voronoi-tessellated materials. We provide a self-contained overview of the ML techniques
used. Of particular importance is the connection between the ML and the true material-
property relationship, how to improve the generalization accuracy by reducing overfitting,
and how new data can be incorporated into the model to tune it to a specific material system.

In the course of this work, over 30 novel neural network architectures were designed and
tested. This lead to three final models optimized for (1) highest test accuracy on the Open
Quantum Materials Database (OQMD), (2) performance in the discovery of new materials,
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and (3) performance at a low computational cost. On a test set of 21,800 compounds
randomly selected from OQMD, they achieve mean average error (MAE) of 28, 40, and 42
meV/atom respectively. The second model provides better predictions on materials far from
ones reported in OQMD, while the third reduces the computational cost by a factor of 8.

We collect our results in a new open-source tool called SIPFENN (Structure-Informed
Prediction of Formation Energy using Neural Networks). SIPFENN not only improves the
accuracy beyond existing models but also ships in a ready-to-use form with pre-trained neural
networks and a user interface.

1.2 Graphical Abstract (Operation Schematic)

Figure 1.1: (Left) Schematic of SIPFENN operation depicting how user can interact with the
software and what processes happen within it. (Right) Performance (on a random OQMD-
subset) of 3 neural networks described in the publication, top-to-bottom: Standard Materials
Model, Light Model, and Novel Materials Model

1.3 Software Access

The most recent version of SIPFENN code is available through Penn State’s Phases Research
Lab website at www.phaseslab.com/sipfenn in (1) a minimal version that can be run on pre-
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computed descriptors in CSV format as well as (2) ready-to use version with pre-compiled
Magpie [2]. SIPFENN contains hard coded links to neural networks stored in cloud that can
be downloaded at a single-click (see Section 3.2) or directly from psu.box.com/v/SIPFENN-
NeuralNets. All neural networks are stored both in (1) open-source MXNet format main-
tained by the Apache Foundation and used within SIPFENN, and in (2) closed-source WLNet
format maintained by Wolfram Research and having advantage of even easier deployment,
as well as guaranteed forward compatibility with future versions of Wolfram Language. For
further ensured longevity of results, SIPFENN neural networks are also stored at the CERN’s
Data Centre through the courtesy of Zenodo.org service under doi:10.5281/zenodo.4006803.

2 Installation

At the time of writing, SIPFENN is shipped as a versioned ZIP file. There are two versions
available, (1) containing SIPFENN source code only, that allows user to run predictions
based on descriptor files (see Section 3.4), and (2) also including a pre-compiled Magpie [2]
software, thus having all of the code required for its operation including descriptor generation
(see Section 3.3). Option number 2 is preferred for simplicity, and it should run regardless
of operating system, however may not work on every machine (e.g. ARM-based computers
such as smartphones). Please remember to cite accordingly.

2.1 Basic

SIPFENN installation has been made very simple and doesn’t require administrator privi-
leges, as to simplify the deployment on high performance computing (HPC) machines. One
simply unpacks the ZIP file into a desired location, later called ”SIPFENN folder”.

Before software can be run, a Python environment, in which it will operate, will require other
dependencies. They are listed in the ”requirements.txt” file and can be quickly fetched using
the standard Python package manager pip by opening the command line (a.k.a. terminal /
command prompt), going to the SIPFENN folder, and typing:

pip install –r requirements.txt

This should install all dependencies and allow the user to move directly to running the
software (see Section 3). If there are any issues, they often stem from how the Python
environment was configured on the given machine and can often be quickly solved by doing
a clean installation (see Section 2.2).

2.2 With Anaconda

To do a clean install of SIPFENN, the user is recommended to use Anaconda. It is a free
Python distribution available at https://www.anaconda.com, which allows the creation of
environments managed by the conda package manager.
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Once Anaconda is installed, to install SIPFENN dependencies, go to the SIPFENN folder
and type in the following commands into the command line to create a new environment
(named e.g. myenv):

conda create –name myenv
conda install -n myenv pip
conda activate myenv
conda install –channel conda-forge pymatgen
pip install –r requirements.txt

On some Mac computers, some extra steps described in Section 5.2 may be needed to run
the GUI correctly.

3 Use

3.1 Start

Once SIPFENN (with required packages) is installed, it can be run by going to SIPFENN
folder within command line (a.k.a terminal) and running:

python SIPFENN.py

This should bring up the SIPFENN Graphical User Interface (GUI) such as the one in Figure
3.1 below. The exact look will depend on the machine and operating system.
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Figure 3.1: SIPFENN Graphical User Interface (GUI)

3.2 Models Download

The final step before predictions can be made is the network download. The easiest way
to accomplish this is to (1) select the desired network from a drop-down menu, and (2)
download the model, as depicted in Figure 3.2.

Figure 3.2:
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The network download process will now begin, as indicated in the SIPFENN log window
(e.g. Figure 3.3).

Figure 3.3:

Progress of the download can be traced in real time in the command line window which
was used to start SIPFENN (e.g. Figure 3.4). In the authors’ experience, download speeds
from the default server have been on the order of 5 MB/s, what corresponded to 30 seconds
download time for Light Model network and 4 minutes for the other two models.

Figure 3.4:

If there is any issue with either running the above procedure or the GUI is not accessi-
ble, there are two other sources of neural networks used within SIPFENN as described in
Section 1.3. The most reliable solution is to download networks from CERN-hosted Zenodo
repository, where networks are published under doi:10.5281/zenodo.4006803. An alternative
(and often faster) option is to fetch them from psu.box.com/v/SIPFENN-NeuralNets. For
normal SIPFENN operation, download and use files with ”.json” and ”.param” extensions.

If networks are manually downloaded, their names need to be manually adjusted to work
with the GUI. The required name format is: architecture-trainingRounds-batchSize.extension
(e.g. ”NN20-R720-B2048.json”). The command line always requires a manual network name
input, so in this case a name change is not required.

3.3 Predictions from Structure Files

Performing predictions from structure files is the fundamental functionality of SIPFENN. It
can accept any periodic arrangement of atoms and then calculate the descriptor (see [3] for
details) using Magpie [2].
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3.3.1 Accepted Formats

SIPFENN imports structure files using the Pymatgen [4] python package and accepts any
format supported by it. For a complete list of over 100 supported (or possibly supported)
formats refer to https://pymatgen.org. Table 1 lists a few common structure files that are a
subset of those accepted by SIPFENN out-of-the-box.

.cif
.mcif

.POSCAR
.CONTCAR

.vasp
.CHGCAR

.json
.mson
.yaml
.xsf
.cssr

Table 1: Selection of supported structure file formats. For a complete list refer to
https://pymatgen.org

Within SIPFENN, all of these structure file formats are interpreted and then exported into
a unified dataset of structures in POSCAR format. A POSCAR file contains all information
defining a crystal in the following form:

Zn4 Pd22
1 .0
−4.551100 4.551100 4.551100
4.551100 −4.551100 4.551100
4.551100 4.551100 −4.551100
Pd Zn Pd
10 4 12
d i r e c t
0 .344379 0.343775 0.343863 Pd
0.666830 0.005434 0.005443 Pd
0.005788 0.666491 0.005671 Pd
0.005510 0.005617 0.666819 Pd
0.008960 0.359592 0.359530 Pd
0.007361 0.651440 0.652104 Pd
0.359350 0.359500 0.008882 Pd
0.651953 0.651326 0.007384 Pd
0.359296 0.008562 0.359166 Pd
0.652068 0.007640 0.651957 Pd
0.788173 0.789024 0.788552 Zn
0.199957 0.011813 0.011755 Zn
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0.011331 0.200140 0.011360 Zn
0.011793 0.011940 0.199951 Zn
0.657594 0.657697 0.390615 Pd
0.344909 0.742695 0.008495 Pd
0.742442 0.344405 0.008912 Pd
0.280319 0.280563 0.612913 Pd
0.657686 0.389927 0.657728 Pd
0.344873 0.009207 0.742790 Pd
0.280662 0.612568 0.280595 Pd
0.742771 0.009147 0.344883 Pd
0.390318 0.657618 0.657616 Pd
0.612900 0.280432 0.280268 Pd
0.008974 0.344526 0.742312 Pd
0.008560 0.742640 0.345022 Pd

The detailed description of meaning of each line can be found in the VASP Guide at
https://cms.mpi.univie.ac.at/vasp/guide/node59.html.

3.3.2 How to Create Structure Files From Scratch

Given intuitive and straightforward formatting of structure files like POSCARs (see Section
3.3.1 above), they can be relatively easily created even in a text editor, and then saved into a
text file with a correct extension. Alternatively, one can use some more robust software such
as CrystalMaker [5] (paid and popular in academia) or VESTA [6] (free for non-commercial
users).

3.3.3 Running Predictions from GUI

Running predictions from structure files using GUI is very straightforward. First, create a
folder with only the structure files of interest. It needs to contain only structure files and/or
”.txt” files describing the contents, as SIPFENN will attempt to run predictions on all files
other than ”.txt”, since accepted structure file formats are very numerous.

Once files are prepared, SIPFENN can be run on structure files through GUI by: (1)
selecting the ”Predict From Structure Files” mode, (2) selecting the folder with structure
files, (3) selecting the model (neural network) to be used, (4) if CUDA-capable GPU is
available, possibly enabling it, (5) if all structure files are POSCAR, possibly skipping the
file conversion for time savings, and (6) engaging the predictions, as depicted in Figure 3.5
below.
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Figure 3.5:

Once engaged, SIPFENN will import structures, analyze them, and convert them to POSCAR,
giving feedback like that in Figure 3.6.

Figure 3.6:

Once converted, SIPFENN will run Magpie to generate the CSV descriptor file. The time
intensity of this process scales roughly linearly with the number of atoms in the structure
(with some constant per-structure overhead). On the testing laptop PC, this process took
approximately 50 ms per average OQMD structure and 1500 ms per 500-atom super-cell.
Progress (or issues) can be tracked in the command line window. Expected output is shown
in Figure 3.7. It is important to verify whether this step was completed successfully, as it
can often fail if Java is not installed or up-to-data (see Section 5.1 for troubleshooting).
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Figure 3.7:

In the last step, SIPFENN will run one of the neural networks on the generated descriptor
CSV table. Progress can be tracked in the SIPFENN log window, and should look like what’s
shown in Figure 3.8.

Figure 3.8:

If all SIPFENN operations are completed successfully, predicted values of formation energy
(in eV/atom) will be generated and SIPFENN will prompt the user to (as in Figure 3.9)
save them into a CSV file in a desired location.

Figure 3.9:

While the user is prompted to save the file with the minimum amount of generated infor-
mation (i.e. the predicted formation energies, described in Section 4.1), two other files are
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generated and saved inside the SIPFENN folder. The ”predictions.csv” (described in Section
4.2) containing corresponding file names, and the relatively large ”descriptor.csv” (described
in Section 4.3) containing a table will descriptors of all structures from the folder selected
earlier.

3.3.4 Running Predictions from Command Line

One of the main reasons behind creation of SIPFENN was to enable formation energy pre-
dictions within other software, thus almost all functionalities can be run from command line
in a very efficient way. Furthermore, for some users running SIPFENN on a server or other
remote machine, a command line interface may be a necessity.

Whatever the reason, one first imports the script designed for predicting from structure
files called predictFromPOSCAR.py by opening Python Console inside the SIPFENN
folder or another python script (within SIPFENN folder), and typing:

import predictFromPOSCAR

Now, four key settings need to be set in the same fashion to what has been described in
Section 3.3.3, namely path to the folder with structures, neural network (model) name, gpu
usage setting, and whether structure need to be converted to POSCARs. Examples of all
four are:

path = ’C:/Users/Adam/Projects/SIPFENN Beta/test5 NN20’
net = ’NN20-R720-B2048’
gpu = 0
conv = 1

Now, predictions can be made by calling the run() function of predictFromPOSCAR.
This can be done, with settings predefined as above, by running:

predictions = predictFromPOSCAR.run(path,net,gpu,conv)

or by passing settings explicitly

predictions = predictFromPOSCAR.run(’C:/Users/Adam/Projects/SIPFENN
beta/test5 NN20’,’NN20-R720-B2048’,0,1)

This should perform all predictions, while printing feedback similar to what was shown
in Section 3.3.3 in Figures 3.6, 3.7, and 3.8. Some additional information may also be
generated, such as warnings regarding versions of packages, depending on how system console
is configured.

Running the above code returns a table with minimum amount of generated information
(i.e. the predicted formation energies, described in Section 4.1). This table can be used by
another software (if running within another script) or saved by the user. A quick way to
save the raw results as a table that can be later opened in, e.g. Excel, is to import savetxt
from numpy:

from numpy import savetxt
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and save predictions with a quick command

savetxt(’myAmazingPredictions.csv’, predictions, delimiter=’,’)

Furthermore, in the background, two files are generated and saved inside the SIPFENN
folder. The ”predictions.csv” (described in Section 4.2) containing corresponding file names,
and relatively large ”descriptor.csv” (described in Section 4.3) containing a table will de-
scriptors of all structures from the selected folder.

3.4 Predictions from Pre-Calculated Descriptor Files

As stressed in the publication [1] and indicated in the graphical abstract in Figure 1.1,
descriptor calculation is much more computationally expensive than making predictions using
a neural network. Therefore, it is often desirable to re-use calculated descriptors to speed
up calculations, where, for example different models are used, or the descriptor space is to
be explored for inverse design. Like the core functionality of predictions from structure files,
this one can also be run from both GUI and command line.

3.4.1 Running Predictions from GUI

Predictions in this mode are run like in Section 3.3.3, by (1) selecting the ”Predict From
CSV Descriptor File” mode, (2) selecting the CSV descriptor file, (3) selecting the model
(neural network) to be used, (4) if CUDA-capable GPU is available, selecting whether to
enable it, (5) selecting whether the CSV file contains reference values for formation energy.
They are located in the last column of the file, namely ”delta e”, and can be added manually
to a descriptor file generated when running predictions from structure files (see Section 3.3.3
or 3.3.4). Lastly, predictions are engaged by (6) pressing ”Perform Computation”. All steps
are depicted in Figure 3.10.

Figure 3.10:

Like when running predictions based on structures, feedback is printed in the log window.
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It is however shorter, since steps like structure file conversion and descriptor generation are
skipped, and thus not reported. Example log from successful computation is shown in Figure
3.11

Figure 3.11:

If the ”CSV File Contains Reference Values” has been checked (see pt.5 in Figure 3.10),
model performance will be evaluated with regard to the reference data in the descriptor
file and performance information will be reported. Example of the reported statistics (for
simulated data) are shown in Figure 3.12.

Figure 3.12:

If ”CSV File Contains Reference Values” has been checked, but SIPFENN detects that
all reference values are exactly 0, indicating that reference values were not inserted to the
descriptor file, it will calculate the error (in this case mean formation energy across the
dataset), but will skip undefined correlation statistics and return a message like in Figure
3.13.
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Figure 3.13:

3.4.2 Running Predictions from Command Line

Predictions in this mode are run like in Section 3.3.4. In this case the script to be ran is
called predictFromCSV.py, so one opens the Python Console inside the SIPFENN folder,
or another python script (within SIPFENN folder) and types:

import predictFromCSV

Now, four key settings need to be set in the same fashion to what has been described in
Section 3.3.4. Like there, the first three are: path to the folder with structures, neural
network (model) name, gpu usage setting. In this case, however, the last setting relates to
whether the descriptor file contains reference values (explained in Section 3.4.1. Examples
for all four are:

path = ’C:/Users/Adam/Projects/SIPFENN Beta/descriptorData.csv’
net = ’NN20-R720-B2048’
gpu = 0
ref = 0

Now, predictions can be made by calling the run() function of predictFromCSV. This
can be done, with settings predefined as above, by running:

predictions = predictFromCSV.run(path,net,gpu,ref)

or by passing settings explicitly

predictions = predictFromCSV.run(’C:/Users/Adam/Projects/SIPFENN
beta/descriptorData.csv’,’NN20-R720-B2048’,0,1)

This should perform all predictions, while printing feedback similar to what was shown in
Section 3.4.1 in Figure 3.11. Some additional information may also be generated, such as
warnings regarding versions of packages, depending on how system console is configured.

Running the above code returns a table with minimum amount of generated information
(i.e. the predicted formation energies, described in Section 4.1). This table can be used by
another software (if running within another script) or saved by the user. A quick way to
save the raw results as a table that can be later opened in, e.g. Excel, is to import savetxt
from numpy:

from numpy import savetxt
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and save predictions with a quick command

savetxt(’myAmazingPredictions.csv’, predictions, delimiter=’,’)

Unlike in the case of running predictions on structure files, no additional files are generated,
since the only input was a descriptor representation of materials.

4 Prediction Results

4.1 Raw Neural Network Output (”rawResults.csv”)

The main result of SIPFENN operation, regardless of how it’s used, is the result table
containing formation energies predicted for each atomic structure file or descriptor table
entry. In the default settings, this table of 32-bit floating point numbers (see Figure 4.1) is
saved into a CSV file ”rawResults.csv”, so that it can later be used by user or some software.

Figure 4.1:
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4.2 Predictions File (”predictions.csv”)

A more robust representation of the results is stored automatically in ”predictions.csv” file.
In the default configuration, as shown in Figure 4.2, it contains both the filenames of structure
files used to make predictions and the corresponding formation energies.

Figure 4.2:

The main purpose of this file is to allow easy extension of what is analyzed and stored.
Thanks to the numerous functions implemented withing pymatgen [4], with a simple mod-
ification of the ”PredictFromPOSCAR.py” script, this file can be populated with many
attributes of materials that are interesting to the user, granted that file conversion (result-
ing in file analysis and conversion) is enabled. In general, additional attributes should be
extracted in similar fashion to the Structure.formula (at line 30) and then included in the
csv writer (around line 70).
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4.3 Descriptor FIle (”descriptorData.csv”)

If SIPFENN is operated in the ”Predict From Structure Files” mode, it will generate a de-
scriptor table and store it in the CSV format in ”descriptorData.csv”. Such descriptor table,
part of which is depicted in Figure 4.3, contains all 271 descriptor features (i.e. columns)
calculated for every material in the dataset (i.e. row). It also contains an additional column
”delta e” at the end, which, when generated by SIPFENN, is filled with 0s. It can, however,
be later populated by known reference values of formation energy, obtained through DFT or
other method, and then used for model accuracy testing, as mentioned in Section 3.4.1.

Figure 4.3:

5 Possible Issues and Solutions

5.1 Descriptor Generation / Java

In most cases, issues with the descriptor generation step can be traced back to issues
with Java installation or configuration. The first step that one should try, is to go to
https://www.oracle.com/java/technologies/javase-downloads.html, select the ”JDK Down-
load”, select an installer compatible with the operating system (such as ”Windows x64
Installer”), and install Java JDK.

If issues with Java persist, one can refer to the Magpie publication [2] and related code
repository issues page.

5.2 Running GUI on Mac

On some Mac machines, there may be issue with running windowed graphics from the com-
mand line (terminal). This issue can be solved by running a clean install described in Section
2.2, but with additional command at the end
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conda install python.app

and then, instead of the command from Section 3.1, starting the software with

pythonw SIPFENN.py

5.3 Multi-Sublattice Models

Magpie [2] is implemented in a way that does not recognize atoms of the same element as the
same species, if they are given separately within the POSCAR structure file. Example file
in 3.3.1 will result in an error, since there are two separate Pd sublattices with occupancies
of 10 and 12, rather than a single one with occupancy of 22.

While not radical, this difference will affect predictions, usually on the order of 10 meV/atom,
and more fundamentally, the calculated descriptor, since attributes such as ”WC Magnitude”
depend on whether two palladiums are recognized as different species.

With any format other than POSCAR the issue will be solved automatically, since file
format conversion is forced, and processed files will be formatted as required. With POSCAR,
however, conversion is skipped to save time for often pointless import+export operation.
This can he changed, thus solving problem, by modifying string ’.POSCAR’ in line 33 of
”PredictFromPOSCAR.py” to any string ”.
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